
Automated Analysis of CSS Rules
to Support Style Maintenance

Ali Mesbah
University of British Columbia

Canada

amesbah@ece.ubc.ca

Shabnam Mirshokraie
University of British Columbia

Canada

shabnamm@ece.ubc.ca

Abstract—CSS is a widely used language for describing the
presentation semantics of HTML elements on the web. The
language has a number of characteristics, such as inheritance
and cascading order, which makes maintaining CSS code a
challenging task for web developers. As a result, it is common
for unused rules to be accumulated over time. Despite these
challenges, CSS analysis has not received much attention from
the research community. We propose an automated technique
to support styling code maintenance, which (1) analyzes the
runtime relationship between the CSS rules and DOM elements
of a given web application (2) detects unmatched and ineffective
selectors, overridden declaration properties, and undefined
class values. Our technique, implemented in an open source
tool called CILLA, has a high precision and recall rate. The
results of our case study, conducted on fifteen open source and
industrial web-based systems, show an average of 60% unused
CSS selectors in deployed applications, which points to the
ubiquity of the problem.

Keywords-Cascading style sheets; CSS; dynamic analysis;
software maintenance; web applications

I. INTRODUCTION

One of the fundamental W3C standards for developing
web applications is Cascading Style Sheets (CSS) [1]. CSS is
a language for defining the presentation semantics of HTML
elements, including their positioning, layout, colour, and
fonts. The main driving force behind adopting CSS has been
the separation of structure from presentation. Although this
separation of concerns helps a web application’s evolution
as far as the structure and content is concerned, the CSS
code itself is not easily maintainable [2], [3].

Writing CSS code is not trivial [4], [3]. It requires
human computer interaction, graphic design, as well as web
programming skills [4]. In addition, the language has a
number of characteristics [5] such as inheritance, cascading,
and selector specificity, which makes understanding how
CSS properties are applied to Document Object Model
(DOM)1 elements at runtime a daunting endeavour for web
developers. Therefore, developers are continuously faced
with challenging questions during web development and
maintenance tasks: Is my web application using all of the de-
fined CSS rules? Which ones are obsolete? What will happen
if this CSS rule is removed? Will it break the layout in some

1DOM is a standard object model representing HTML at runtime. It
is used for dynamically accessing, traversing, and updating the content,
structure, and style of HTML documents.

pages? Is this selector really effective or is it overridden by
another rule at runtime? Which DOM elements does this rule
affect? Are there any undefined classes in the HTML code?
Consequently, as a web application evolves, unused rules or
ineffective ones with properties that are always overridden
start to accumulate over time. This accumulation of unused
code has a number of negative consequences:

• All client-side code, including any unused CSS code,
needs to be downloaded and parsed by the browser to
load a web application; The larger the code, the higher
the load on the network, server, and, browser.

• The web browser is a CPU-intensive program [6], [7].
Benchmarks of popular browsers such as Internet Ex-
plorer [8], Safari [9], and Firefox [7] reveal that visual
layout consumes 40-70% of the average processing
time. On every new page, the browser tries to match
the parsed CSS rules against the DOM tree. Matching
unused selectors is an unnecessary overhead, which can
significantly increase the loading time of a web page
[9] and decrease the level of responsiveness;

• Unused code adversely influences program compre-
hension, maintainability, and ultimately code quality
by increasing the probability of introducing errors. In
addition to financial costs, web applications that contain
errors, such as pages that display incorrectly, result in
loss of revenue and credibility [10].

Despite these challenges, CSS analysis has not received
much attention from the research community and there is
currently a lack of solid tools and techniques to support its
comprehension and maintenance. To the best of our knowl-
edge, analyzing CSS code from a maintenance perspective
has not been addressed in the literature.

In this paper, we propose a technique that automatically
(1) checks CSS code against different DOM states and their
elements to infer an understanding of the runtime relation-
ship between the two; (2) detects unmatched and ineffective
rules, overridden declaration properties, and undefined class
values. We have implemented the technique in an open
source tool called CILLA. The results of our evaluation show
that CILLA has a high precision and recall rate of retrieving
unused CSS code. Our empirical study conducted on fifteen
web-based systems indicates that, on average, 60% of CSS
selectors is unused in deployed web applications.

#news { background-color: silver; f o n t : i t a l i c ; color: black; }

. s p o r t s { color : blue ; text-decoration: underline; }

H3 , H4 { font�family : sans�serif ; }

.latest { color : green ;}

#news span { color: red; }

P .select { font�size : medium ; }

Figure 1. Motivating CSS example (example.css). The CSS properties
that are used at runtime are shown in bold.

The key contributions of this paper are:
• A discussion of challenges surrounding CSS rule com-

prehension and maintenance;
• A fully automated technique and algorithms for infer-

ring knowledge about actual style code coverage and
selector effectivity;

• An open-source tool implementing the analysis tech-
nique and algorithms;

• An empirical study to validate the proposed technique,
demonstrating its efficacy and real-world relevance.

II. BACKGROUND

A CSS rule is composed of two parts: selector and
declaration [11]. Figure 1 presents a simple example of CSS
rules and how they are linked to the elements of two DOM
states in Figure 2. We will refer to these two figures as
the ‘motivating example’ in the rest of this paper. In the
first defined CSS rule, #news is the selector part. As the
name suggests, a selector selects one or more elements from
the DOM tree. The declaration part is code between curly
brackets, which defines the styling properties to be applied to
the selected element(s). In this case, for instance color is a
declaration property and black is the value of that property.
The language provides three mechanisms for selecting DOM
elements:
Element selectors are defined by using DOM element

types; e.g., P {color: blue } selects any <P>
element with or without attributes.

ID selectors are defined by using the ‘#’ prefix and are
matched based on the value of the ID attribute of DOM
elements; e.g., #news {background-color:
silver} selects <P id="news" ...>.

Class selectors are defined by using the ‘.’ prefix and
are matched based on the value of the class attribute
of DOM elements; e.g., .sports {color: blue}
selects .

Both ID and class selectors can also be defined with
an associated element type. For instance P.select
{font-size: medium} selects <P> elements with a
class attribute value equal to select. If no element type
is defined, the rules apply to all matched element types.

Complex selectors can be written by combining multiple
simple selectors separated by white space, e.g., #news

DOM 1:
<HTML>
<HEAD>
<LINK h r e f =” example . c s s ” r e l =” s t y l e s h e e t ” t y p e =” -

t e x t / c s s ” />
</HEAD>
<BODY>

<P i d = ' news ' s t y l e = ' f o n t : normal '>World
Sports news</ SPAN>

</ P>
<DIV c l a s s = ' s p o r t '>Football</ DIV>

</BODY>
</HTML>

DOM 2:
<HTML>
<HEAD>
<LINK h r e f =” example . c s s ” r e l =” s t y l e s h e e t ” t y p e =” -

t e x t / c s s ” />
</HEAD>
<BODY>

<P i d = ' news ' s t y l e = ' f o n t : normal '>World
latest news</ SPAN>

</ P>
</BODY>

</HTML>

Figure 2. Two DOM states of our motivating example. The visual effects
of the CSS code from example.css are presented under each state.

span selects a DOM SPAN element that is the child of
an element with an ID attribute equal to news. If the
same declaration should be applied to different selectors,
selectors can also be grouped together. Grouping happens
by separating the selectors with a comma (e.g., H3, H4
{font-family: sans-serif}).

CSS also has the notion of pseudo elements (e.g.,
P:first-line) and pseudo classes (e.g., A:visited)
to allow style formatting based on information that lies
outside the DOM tree [12].

Inheritance. Inheritance in CSS [5] allows a styling
property value to be propagated from the parent to the de-
scendent elements. Our motivating example shows a simple
case of inheritance in working. The SPAN element inherits
the background color property (silver) from its parent
element P, through the CSS rule #news. An inherited
property can also be overridden in CSS. For instance, the
same SPAN element has a parent with a font color of black,
but since there is a more specific color property defined
for the element through #news span, the value of the
inherited property is overridden by red.

Cascading and Specificity. The cascading notion in CSS
ultimately determines which properties will be applied to a
selectable DOM element. The cascading order is based on
two main concepts: specificity and location. When there is a
competition on an element from two or more CSS rules for
the same property (e.g., color), the language applies these
methods to determine which rule takes precedence.

1) Specificity: As we have seen, CSS provides different
selector types to target DOM elements and each of these
types carries a different weight of importance. The speci-
ficity weight of a selector is the sum of all its selector
type’s weights. The more specific a selector points to a DOM
element, the higher its specificity weight.

In our motivating example, both #news span
and .latest selectors compete for the element’s color property. #news
span wins because it is more specific about the element
(i.e., it specifies both the tag name and the parent’s ID),
and thus the DOM element receives a red color.

In case an element is targeted by multiple selectors
carrying the same specificity weight, the selectors’ location
becomes the determining factor.

2) Location: Location is determined by the source of a
CSS rule and its position. CSS rules can be defined in three
different sources:
Inline declarations are defined on specific HTML elements

using the style attribute;
Embedded rules are defined inside a <STYLE> element

within an HTML document’s header;
External style sheets are separate files, usually with a

.css extension, referenced from HTML documents.
When multiple rules from various sources select the

same element, the rule closest to the DOM element has
the highest priority. Based on this definition, the priority
scheme becomes from highest to least: inline, embedded,
and external style rules. The language also allows authors
to use the !important declaration on the property level.
A property designated as important, receives the highest
priority over competing rules.

Challenges and Motivation. Our motivating example
is a very simple example of the kind of CSS code that
is present on the web. The code snippet is showing the
properties that are applied on the elements of the two DOM
states at runtime in bold. This clear indication is, however,
not readily available when developers write or maintain CSS
code. Even in this simple example, with only two DOM
states and a few lines of CSS code, it is not trivial to
understand how the rules are applied to the DOM elements.
Having to work on a web project with thousands of lines
of CSS code and hundreds of DOM states can, thus, be
very challenging. Our aim in this work is to provide a
technique that can automatically provide the developer with
information on CSS rule usage.

III. RELATED WORK

We categorize related work into two groups, namely CSS
analysis and unused code detection.

CSS Analysis. Despite its widespread adoption and
maintenance challenges, CSS code has not received much
attention from the research community. Lie [13] presents
an in-depth discussion of style sheet languages and some of
the design decisions behind CSS. Keller and Nussbaumer [4]
compare user authored CSS code to generated CSS code and

propose an abstractness factor for measuring code quality.
They argue that manual CSS code has a higher abstractness
factor than generated code. Quint and Vatton [3] provide
an overview of techniques and tools for editing style sheets.
They identify challenges CSS developers face and argue that
robust CSS debuggers and rule analyzers are a necessity
for web developers. Meyerovich and Bodik [9] propose
algorithms for CSS selector matching, layout solving, and
font rendering to improve page loading performance in
browser layout engines.

Extending CSS to account for some of the limitations of
the language has gained more attention. For instance, Badros
et al. [2] propose a constraint-based style sheet model on
top of CSS2, called CCSS, which allows a more flexible
specification of the layout. A more recent language extension
is Sass [14], which supports variables, nested rules, mixins,
inline imports, and selector inheritance. The code written in
Sass can be automatically translated into valid CSS code.

Current industrial tools for analyzing CSS code are mainly
static analyzers concerned with either standard conformity,
such as W3C CSS validator [15], or code formatting and
optimizations, such as CSSTidy [16], CSSClean [17], and
CSS Lint [18]. A few industrial tools exist, such as Dust-Me
Selectors (DMS) [19] and CSSESS [20], which target CSS
rule analysis. All such tools are, however, still immature.
In particular, they produce a high rate of false positives and
false negatives (as shown and discussed in Sections VI-VII).

Unused Code Detection. Detecting unused code in
conventional programming languages (e.g., Java, C++) has
been explored in a number of different contexts.

Dead code and unreachable code elimination is addressed
in compiler optimization techniques [21], [22]. The main
focus in these techniques is optimizing code generation.
Tip et al. [23] use program transformation and extraction
techniques to detect and remove unreachable methods and
redundant fields in Java. Their goal is to reduce the size of
distributed applications deployed via the Internet. Tempero
[24] presents an empirical study on unused design decisions
in Java applications. The study indicates a high degree of
unused code in open source software. Industrial tools such as
PMD [25] and UCDetector [26] aim at spotting unused local
variables, parameters, and methods in Java. Another related
topic is clone detection and removal to improve program
comprehension and maintenance. Roy et al. [27] provide an
overview of clone detection tools and techniques.

To the best of our knowledge, analyzing CSS rule usage
and effectivity has not been addressed in the literature.

IV. OUR APPROACH

Our overall approach is based on dynamic analysis in
which we automatically drive a given web application and
infer the runtime relationship between the CSS rules and
DOM elements of the navigated states. We use this inferred
relational knowledge to spot unused CSS selectors.

The Venn diagram of Figure 3 depicts the total landscape
of CSS selector coverage and what our approach targets.
Set AS represents all the CSS selectors present in a web

AS: All selectors

US: Unmatched
selectors

IS: Matched and
ineffective selectors

ME: Matched and effective

Figure 3. CSS selector coverage landscape.

application. US is the set of unmatched selectors, i.e.,
selectors with no DOM element counterparts. The set AS
� US contains all the matched selectors, from which the set
IS encompasses all the ineffective ones, i.e., the selectors
that are matched but have no effect on the DOM elements.
ME is the set of all matched and effective selectors. Ideally,
after each development and maintenance cycle, the CSS code
should only contain the set of selectors in ME.

Our technique operates in three steps to detect unused
selectors and undefined class values. In the first step, we
execute each selector against all DOM states to differentiate
unmatched selectors (US). In the second step, the matched
selectors (AS � US) and DOM elements are analyzed to
detect the set of ineffective selectors (IS). The output of our
technique as far as the total unused selectors is concerned
is the set US [IS. There is also the set of class values
(UC) present on DOM elements that are not defined in CSS
code (not shown on the diagram). In the last step, we use
the matched selectors to spot these undefined class values.
Each of these steps is further described in the following
subsections.

A. Relation between CSS and DOM
The first step in our analysis is to determine the relation

between CSS rules and their counterpart DOM elements.

Definition 1 (Matched Selector) Let ⌃ denote the set of
DOM states, then a CSS selector S is said to be matched if
and only if there exists at least one DOM element E 2 ⌃

so that it is selectable by S.

Based on this definition, a selectable element is a DOM
element matched by a selector. Algorithm 1 shows our
algorithm for analyzing CSS selectors and their counterpart
DOM elements. For each detected DOM state (line 5),
the algorithm extracts all the new CSS rules and adds
them to the overall set of CSS rules (line 6). The utility
function EXTRACTNEWCSSRULES scans each new DOM
tree looking for unexamined embedded rules and external
CSS files. Using the URL of each external CSS resource,
the content is retrieved through a HTTP request. Then the
extracted CSS code is parsed and transformed into an object
model, containing all the information about the rules and
declarations, as well as their resource (e.g., URL of the CSS
file) and location (e.g., line number).

Since a CSS rule can have grouped selectors, we iterate
over the set of selectors of the current rule (lines 7-9). Then,

Algorithm 1: Analyzing Selectors and DOM Ele-
ments

input : ⌃: set of visited DOM states
output: Set of annotated CSS rules (R), unmatched selectors

(US), selectable DOM nodes (⌦)
1 begin
2 Set R ;
3 Set ⌦ ;
4 Set US ;
5 foreach dom 2 ⌃ do
6 R [EXTRACTNEWCSSRULES(dom)
7 foreach rule 2 R do
8 S rule.GETSELECTORS()
9 foreach selector 2 S do

10 xpathExpr
TRANSFORMTOXPATH(selector)

11 nodes
dom.EVALUATEXPATH(xpathExpr)

12 if nodes 6= ; then
13 selector.matched true

14 selector.matchedNodes nodes

15 ⌦ [nodes

16 foreach rule 2 R do
17 foreach selector 2 rule do
18 if selector.matched = false then
19 US [{selector}

to check whether a selector matches any DOM elements, we
transform the selector into a corresponding XPath expression
(line 10) that can be evaluated on the current DOM tree
(line 11). We have defined a mapping of the CSS selector
syntax to the XPath language. For instance, the selector
#news span is translated to ./descendant::*[@id
= ‘news’]/descendant::SPAN.

In case the XPath expression retrieves elements from the
DOM (line 12), we annotate the selector as matched (lines
13-14) and add the retrieved elements to the overall set of
selectable elements (line 15).

After all the DOM states are covered and having an-
notated all the matched selectors and selectable elements,
the algorithm iterates over all the rules to find the set
of unmatched selectors (lines 16-19). Going back to our
motivating example, this algorithm returns P.select, H3,
and H4 as the detected unmatched selectors since these do
not touch any of the elements in the two given DOM states.
In addition, through this algorithm, we know exactly which
elements in the two DOM states are selectable by which CSS
selectors. We use this information in the following step of
our analysis.

B. Effective Selectors and Declaration Properties

Not all matched selectors are used at runtime per se.
For instance, although the .latest selector in Figure 1
matches in state 2 of Fig-
ure 2, the selector is actually not effective due to its low
specificity weight. Thus, to understand a selector’s effect on
DOM elements, a more specific definition is required.

Algorithm 2: Analyzing Declaration Properties
input : ⌦: set of selectable DOM nodes; R: set of annotated

CSS rules
output: Set of ineffective selectors (IS) and properties

1 begin
2 foreach node 2 ⌦ do
3 overridden GETRANDOMINT()
4 S GETMATCHINGSELECTORS(node, R)
5 OS ORDERSPECIFICITYLOCATION(S)
6 for i! 1 to OS.SIZE() do
7 selector OSi
8 P selector.GETPROPERTIES()
9 foreach property 2 P do

10 if property.status 6= overridden then
11 property.status EFFECTIV E

12 for j ! i+ 1 to OS.SIZE() do
13 selectorC OSj
14 PC selectorC.GETPROPERTIES()
15 foreach propertyC 2 PC do
16 if property.name =

propertyC.name then
17 propertyC.status

overridden

18 Procedure INEFFECTIVESELECTORS(R) begin
19 Set IS ;
20 foreach rule 2 R do
21 foreach selector 2 rule do
22 counter 0
23 P selector.GETPROPERTIES()
24 foreach property 2 P do
25 if property.status 6= EFFECTIV E

then
26 counter ++

27 if counter = P.SIZE() then
28 IS [{selector}

Definition 2 (Effective Selector) A matched CSS selector
S is said be effective if and only if S has at least one
declaration property that is applied to a selectable DOM
element E 2 ⌃.

Algorithm 2 shows our overall algorithm for analyzing
the effectivity of selectors and declaration properties. The
input to this algorithm consists of the set of annotated CSS
rules as well as the set of selectable DOM elements from
Algorithm 1.

For each selectable DOM element, the algorithm starts by
retrieving all the corresponding CSS selectors that matched
that particular element (line 4). Then it sorts the list of
matched selectors (line 5) according to their calculated
specificity weight in decreasing order.

Based on the CSS specification [5], we calculate the
overall specificity weight (SW) of a selector S composed
of different selector types as follows:

SW (S) = concatenate(a, b, c, d)

where a, b, c, and d are calculated as follows:

• a =

⇢
1 if the declaration is inline
0 otherwise

• b = number of ID types in S
• c = number of class types in S
• d = number of element types in S
Going back to our motivating example, #news span

and .latest selectors have specificity weights of 0101
(1 ID attribute and 1 element type) and 0010 (1 class
type) respectively. In this case #news span has a higher
specificity.

If two selectors have the same specificity weight, then
their cascading order in terms of their location is used for
ordering (See Section II).

We know by definition that the declaration property of
a selector that has a higher cascading order and specificity
weight wins over all the competing selectors. Thus, once the
selectors for an element are ordered based on their specificity
and location, the algorithm starts annotating the properties
in that exact order. For each property in a selector, the
algorithm first checks whether the property has already been
overridden by a higher order property (line 10). If that is
not the case, the property is marked as EFFECTIVE (line
11). When an effective property has been identified, all the
properties of the competing selectors that have the same
property name are marked as overridden (lines 12-17). At
the end of this step, we can distinguish between effective
and ineffective properties.

Once all the properties are annotated, we can retrieve
the set of ineffective (or effective) selectors. The INEFFEC-
TIVESELECTORS procedure iterates over all the annotated
rules and selectors (lines 20-21). If none of the properties
of a selector is marked as EFFECTIVE (lines 24-27), then
that selector is added to the set of ineffective selectors (line
28).

By applying this algorithm to our motivating example,
#news, .sports, and #news span are identified to be
effective, since they all have at least one effective property.
This leaves .latest as ineffective.

Note that the total set of unused selectors that our ap-
proach returns is a union of unmatched selectors and ineffec-
tive selectors (e.g., {P.select, H3, H4, .latest}).
Using the same principle, we can retrieve the total set
of unused CSS properties (i.e., all the properties that are
not marked EFFECTIVE plus the properties of unmatched
selectors).

C. Detecting Undefined Classes
We reverse the process and analyze the DOM elements to

examine whether all the class attribute values are defined as
CSS rules.

Definition 3 (Defined Class Values) A class attribute
value C attached to a DOM element is said be defined
if and only if there exists at least one CSS selector that
matches C.

There are at least four scenarios imaginable for a CSS
class to be undefined: (1) the developer forgets to define

Algorithm 3: Analyzing Class Attribute Values
input : ⌃: set of visited DOM states; R: set of annotated CSS

rules.
output: Set of undefined class values (UC)

1 begin
2 Se C ;
3 Set DefC ;
4 Set UC ;
5 foreach dom 2 ⌃ do
6 N dom.GETELEMENTSBYTAGNAME(*)
7 foreach node 2 N do
8 attr node.GETATTRIBUTE(0class0)
9 CV attr.GETVALUES()

10 foreach value 2 CV do
11 C [{value}
12 foreach rule 2 R do
13 S rule.GETSELECTORS()
14 if value 2 S then
15 DefC [{value}
16 break

17 UC {C �DefC}

the CSS rule for the class value; (2) the CSS rule definition
is removed making the class obsolete; (3) a mistake (e.g.,
typo) is made in attaching a defined class value to the DOM
element (4) the class value is used for purposes other than
styling such as querying the DOM through JAVASCRIPT.
The first three scenarios require close inspection by the
developers to either fix the error or clean up the unused
code.

Algorithm 3 presents our method for detecting undefined
CSS class values. This algorithm takes as input the set of
visited DOM states along with the set of annotated CSS
rules. For each DOM state, it first extracts all the nodes
from the tree (line 6). Then, the values of each node’s
class attribute are retrieved (line 8). Each class value is
then subsequently checked against all the selectors (lines 10-
13). If a selector matches the class value, the algorithm adds
the class to the set of defined classes (line 15) and continues
with the next class value. At the end, the algorithm returns
the set of undefined classes (line 17). When applied to our
motivating example, the class attribute value sport from
<DIV class=‘sport’> is returned as undefined.

V. TOOL IMPLEMENTATION

We have implemented our CSS analysis technique in an
open source tool called CILLA.2 We use CSSPARSER [28]
to parse CSS source code and transform the rules into a
DOM 2 Style tree [29]. For automating the DOM state
exploration phase, we use CRAWLJAX [30], [31], a dynamic
web crawler capable of detecting DOM state changes of
AJAX-based web applications.

When the initial index page of a web application is loaded,
CILLA extracts all external and embedded CSS sources.
Then it retrieves and parses the CSS code to create a map

2 http://salt.ece.ubc.ca/content/cilla/

of all the CSS rules, selectors, and property declarations
associated with each source. Each rule’s relation to the
elements of the current DOM tree is examined and the map
is annotated with the findings (Algorithms 1-2). Then the
class attributes of all the elements on the DOM tree are
analyzed (Algorithm 3).

Our tool currently excludes pseudo elements/classes from
the analysis process, because inherently their relation cannot
be deduced from the DOM tree [12].

For each consecutive new DOM state, CILLA first ex-
amines all the CSS sources defined in that particular state.
Any new CSS code that is identified is parsed and added to
the map before the analysis is carried out for that particular
state.

When the state exploration phase is done, the tool iterates
over the entire CSS rule entries in the map and reports about
the findings. The first entry in the report consists of the
total number of (1) examined CSS resources, rules, selectors,
and properties (2) detected matched and unmatched selectors
(3) detected effective and ineffective selectors (4) detected
used and unused properties (5) and detected undefined
class values. In addition, details of the detected ineffective
and unmatched selectors including their location and line
number, and undefined class values are reported. The report
also includes all effective and matched rules along with the
list of corresponding DOM elements for each selector.

VI. EMPIRICAL EVALUATION

To assess the effectiveness and real-world relevance of
our approach, we have conducted a case study following
guidelines from Runeson and Höst [32]. Our evaluation
addresses the following research questions:
RQ1 What is the overall accuracy of CILLA in detecting

unused CSS code?
RQ2 How does CILLA’s detection rate compare to existing

approaches?
RQ3 What percentage of CSS code is typically unused in

online web-based systems?

A. Experimental Objects

During the implementation and testing phases of CILLA,
we used two web applications with unused rule sets that
were well-known to us. However, in the evaluation phase,
our goal is to assess the effectiveness of the approach
on real-world web applications. Our study includes fifteen
web-based systems in total. Two are open source, namely,
Phormer, which is a photo gallery written in PHP, and Igloo,
a simple company website taken from the book ‘Pro CSS
for High Traffic Websites’ [33]. Seven of the systems are
randomly selected using the random link generator provided
by Yahoo! [34], which has also been used in other studies
[35]. The randomly selected web systems include Becker,
Equus, PTE, Vanities, LCN, EmployeeSolutions, and Sync.
We further include six online web applications in our list
of experimental objects, namely those of the ICSE 2012

Table I
EXPERIMENTAL OBJECTS.

ID Exp. Object Resource
1 Igloo http://www.apress.com [33]
2 Phormer http://p.horm.org/er/
3 Becker http://www.beckerelectric.com
4 Equus http://www.equuscap.com
5 PTE http://www.protoolsexpress.com
6 Vanities http://www.uniquevanities.com
7 LCN http://www.centralfloridaphones.com
8 ICSE12 http://www.ifi.uzh.ch/icse2012/
9 EmployeeSolutions http://www.employeesolutions.com
10 Sync http://www.synccreative.com
11 GlobalTVBC http://www.globaltvbc.com
12 Lenovo http://www.lenovo.com/ca/en/
13 MountainEquip http://www.mec.ca
14 Staples http://www.staples.ca
15 MSNWeather http://local.msn.com/worldweather.aspx

conference, GlobaLTVBC news, Mountain Equipment CO-
OP, Staples Technology and Electronics, and MSN weather
forecasts.

Table I shows each system’s ID, name, and resource. The
characteristics of these systems in terms of their size and
complexity is shown in Table II.

B. Experimental Setup
Our study is composed of two parts. The first part (RQ1-

2) focuses on the accuracy of CILLA and compares it to
tools currently available to web developers for analyzing
CSS selectors. The second part (RQ3) empirically explores
how omnipresent unused CSS code is in web applications.
The experimental data produced by CILLA is available for
download.2

To run the experiment, we provide the URL of each ex-
perimental object to CILLA and choose the default crawling
settings for event generation and DOM state comparison.
Then we run the tool and save the generated output.

To evaluate the accuracy of reported unused CSS selectors
(RQ1), we measure precision, recall, and F-measure as
follows:
Precision is the rate of detected unused selectors found by

the tool that are correct: TP

TP+FP

Recall is the rate of correct unused selectors that the tool
finds: TP

TP+FN

F-measure is the harmonic mean of precision and recall:
2⇥Precision⇥Recall

Precision+Recall

where TP (true positives), FP (false positives), and FN

(false negatives) respectively represent the number of unused
CSS selectors that are correctly detected, falsely reported,
and missed. To document TP , FP , and FN in a timely
fashion while preserving accuracy, we randomly select 20%
of the CSS rules from the first ten systems in Table I as
follows:

↵ =

⇢
d0.2⇥ ne if n � 100
20 otherwise

where, ↵ is the number of randomly selected CSS rules and
n is the total number of CSS rules. We manually examine the
samples against the reported output. It is worth mentioning

Table II
CHARACTERISTICS OF THE EXPERIMENTAL OBJECTS.

ID #
C

SS
Fi

le
s

LO
C

(C
SS

)

#
C

SS
R

ul
es

#
C

SS
Se

le
ct

or
s

#
Ig

no
re

d
Se

le
ct

or
s

#
C

SS
Pr

op
er

tie
s

#
Ig

no
re

d
Pr

op
er

tie
s

#
D

O
M

st
at

es

1 2 832 150 321 76 864 159 2
2 1 854 114 120 13 384 13 58
3 3 2505 178 192 12 775 26 32
4 6 530 46 46 20 157 89 69
5 2 3642 353 405 20 1006 41 146
6 8 6764 706 754 24 2125 46 100
7 36 11504 1131 1452 133 3915 265 41
8 5 2506 253 336 10 655 21 47
9 3 2011 183 242 22 523 32 18

10 58 3705 361 372 2 1065 2 53
11 58 40802 6439 7822 671 18305 1785 182
12 11 11440 531 664 87 2077 189 235
13 14 9457 1434 1883 143 3987 368 154
14 39 14757 1052 1347 197 4504 794 205
15 63 6414 1535 2133 282 4516 534 253

that manual checking of CSS rules is a labour intensive task.
In this study, examining the ten samples took approximately
36 hours (in 4 days).

To answer RQ2, we compare the results produced by
CILLA to the results generated by two industrial open source
tools, namely Dust-me Selectors (DMS) [19] and CSSESS
[20]. Similar to CILLA, both these tools aim at spotting
unused CSS rules. Since DMS is a Firefox plugin, we use
Firefox for the state exploration phase in all our experiments
to make comparisons possible (CILLA supports IE and
Chrome as well). Note that the same set of randomly se-
lected samples are used to conduct the comparisons through
precision, recall, and F-measure as defined above. Since
CILLA, DMS, and CSSESS are not able to analyze pseudo
classes/elements, we ignore pseudo items in the evaluation
of all the three tools (See Table II, # Ignored Selectors).

To address RQ3, we run CILLA on all fifteen experimental
objects and calculate the percentage of the CSS code that is
found to be unused.

C. Results

Table II presents the examined properties of each system,
produced by CILLA. The table shows the number of exam-
ined CSS files, total lines of embedded and external CSS
code, number of CSS rules, number of CSS selectors, num-
ber of ignored selectors (pseudo elements/classes), number
of CSS declaration properties, number of ignored properties
(belonging to a pseudo selector), and the number of DOM
states examined.

Table III shows the results of our evaluation produced
by CILLA. For each experimental object, the table shows
the detected number of undefined classes (UC), unmatched
selectors (US), ineffective selectors (IS), unused selectors
(US+IS), unused declaration properties (UP), the percentage
of unused selectors, and the percentage of unused properties.

Table III
EVALUATION RESULTS PRODUCED BY CILLA.

ID UC US IS US+IS UP % US+IS % UP
1 16 80 23 103 90 42 13
2 0 20 5 25 83 23 22
3 2 49 9 58 223 32 30
4 0 2 5 7 14 27 20
5 13 127 6 133 288 34 30
6 15 433 70 503 1335 69 64
7 140 897 45 942 1906 71 52
8 42 211 8 219 334 67 53
9 18 158 4 162 341 74 69
10 43 207 2 209 551 56 52
11 95 5491 952 6443 14290 90 86
12 450 319 21 340 978 59 52
13 28 1237 103 1340 2447 77 68
14 31 1018 40 1058 3351 92 90
15 10 1509 17 1526 3199 82 80

Table IV
DESCRIPTIVE STATISTICS OF UNUSED SELECTORS AND PROPERTIES.

Min. 1st Qu. Median Mean 3rd Qu. Max.
% IS 1.00 3.75 6.20 12.88 15.15 71.40
% US+IS 23.00 38.00 67.00 59.67 75.50 92.00
% UP 13.00 30.00 52.00 52.07 68.50 90.00
% Red. 10.00 23.00 32.00 33.07 44.50 58.00

We calculate the percentage of unused selectors (% (US+IS))
and unused properties (%UP) as follows:

%(US + IS) = (US+IS

#CssSelectors�#IgnoredCssSelectors

⇥
100)

%UP = (UP

#CssProperties�#IgnoredCssProperties

⇥ 100)
Table IV shows descriptive statistics of the percentages

of detected ineffective selectors (% IS), unused selectors (%
(US+IS)), unused properties (% UP), and reduction in CSS
code size if the unused code were to be removed (% Red.).

D. Findings
1) Accuracy: The precision and recall rates, measured for

CILLA, DMS, and CSSESS, are presented in Figure 4. The
F-measure is shown in Figure 5. As far as RQ1 is concerned,
our results show that CILLA is highly accurate in detecting
unused CSS selectors. The recall is 100%, meaning that our
approach can successfully spot all unused selectors of type
class, ID, and element, present in a web application. The
precision oscillates between 80-100%, which is caused by a
low rate of false positives (discussed in Section VII under
Limitations). The F-measure varies between 90-100%. The
comparisons in Figure 4 and 5 emphasize that the accuracy
of CILLA is higher than that of DMS and CSSESS in recall,
precision, and F-measure (RQ2). DMS performs better than
CSSESS but it still suffers from a high rate of false positive
and negative.

2) Unused CSS Code: Figure 7 depicts a bar plot of
the percentages of unused CSS selector and declaration
properties for all the fifteen systems. The numbers on each
bar represent the number of unused entities. In order to
obtain the results shown in Figure 7 in a reliable manner, we
varied the number of DOM states (from 10 to 200) CILLA
had to analyze from each system. By increasing the number
of DOM states covered, we find out when the number of
detected unused selectors as well as the percentage stabilize

0.6 0.7 0.8 0.9 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

Recall

Pr
ec
is
io
n

CILLA
DMS
CSSESS

Figure 4. Plot of precision and recall for CILLA, DMS, and CSSESS.

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Experimental Objects

F−
m

ea
su

re

1 2 3 4 5 6 7 8 9 10

CILLA
DMS
CSSESS

Figure 5. F-measure of CILLA, DMS, and CSSESS obtained for each
object.

(i.e., remain unchanged). We depict the results in Figure
6 obtained from six systems with high numbers of DOM
states. The percentage of unused selectors oscillates when
we increase the number of explored DOM states from 10 to
50. After 50, the graph stabilizes, indicating that the process
of detecting unused selectors has reached a steady state. The
numbers in Figure 7 represent the percentages of unused
selectors taken after stabilization.

Going back to RQ3, the high percentages reported in
Figure 7 clearly indicate that there is a huge amount of
unused CSS code in online web applications. As shown
in Table IV, on average, there are 59.67% unused CSS
selectors and 52.07% unused declaration properties. Staples
has the highest unused percentages: 92% selectors and 90%
declaration properties.

Our results show that ineffective selectors are present in
web applications and they can form up to 71.4% of the total

50 100 150 200

40
50

60
70

80
90

10
0

DOM States

U
nu

se
d

Se
le

ct
or

s
(%

)

●

●

● ● ● ●

●

Staples
Lenovo
MSNWeather
MountainEquip
GlobalTVBC
LCN

Figure 6. Percentage of unused selectors versus the number of DOM
states.

number of unused selectors. Unmatched selectors, however,
constitute the largest portion of unused code. There are also
a number of undefined class values in HTML code. The
highest number reported in our study is 450 for Lenovo. As
shown in Table IV, CSS file size can be reduced by up to
58% merely by eliminating unused selectors and properties.

VII. DISCUSSION

Correlations. To examine the relationship between the
number of unused selectors and the independent variables
in Table II, we used R [36] to calculate the non-parametric
Spearman correlation coefficients (r) as well as the p-values
(p), and plotted the graphs. We present the combinations that
indicate a possible correlation. Figure 8 depicts the scatter
plot of the total number of selectors versus the number of
detected unused selectors with the line of best fit. Clearly,
there is a high linear correlation (r = 0.964, p = 0) between
the two: The higher the number of CSS selectors, the more
unused selectors are present in a web application.

More interesting is Figure 9, which shows the scatter
plot of the percentage of unused selectors versus the av-
erage DOM size. The correlation coefficient (r = 0.557,
p = 0.017) suggests that the variables are positively co-
related. One reason might be that when there are more DOM
elements present, it becomes more difficult for developers to
have a clear understanding of their CSS code usage and
effectivity. Another reason could be that when there are
more DOM elements and selectors, developers become more
reluctant to remove unused selectors in fear of breaking the
style, since they do not know exactly if or where a certain
selector is used.

Limitations. Similar to other tools, one of the limitations
of our technique is that pseudo elements/classes are currently
not supported. Table II presents the number of ignored
pseudo selectors and properties. As mentioned earlier, we
ignore pseudo items in the evaluation of all the three tools.

Experimental Objects

U
nu

se
d

(%
)

0
20

40
60

80
10

0

103

90

2583

58
223

7

14

133
288

503

1335

942

1906

219

334

162

341

209
551

6443
14290

340

978

1340

2447

1058
3351

1526
3199

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

selectors
properties

Figure 7. Bar plot of the percentage of unused selectors and declaration
properties. The numbers on each bar represent the number of unused
entities.

Therefore, any unused pseudo item that is ignored could be
regarded as a false negative. As shown in Figure 4, unlike
DMS and CSSESS, CILLA achieves a 100% recall rate. This
implies that in CILLA, false negatives could potentially be
caused only by unused pseudo classes/elements.

Since our approach is based on dynamic analysis, the
explored state space is only a subset of the entire state
space. This limitation is in part inherent to all dynamic
analysis techniques. Thus, if a CSS selector is used in a
certain DOM state not present in the explored set, then that
selector is mistakenly marked as ‘unused’. A low rate of
false positives produced by CILLA is caused by these CSS
rules. The conclusive outcome from our evaluation, apart
from the fact that unused CSS code is omnipresent on the
web, is that within the automatically explored state space,
our technique is capable of detecting unused selectors with
a high level of accuracy.

Applications. The first direct application of our tech-
nique is in CSS code maintenance. CILLA can be incor-
porated into web development cycles through automated
nightly runs. The reported unused code can, for instance,
be deleted to maintain a clean code base and decrease the
processing load on the browser. Specifically, mobile web
applications could greatly benefit by avoiding the download
of unnecessary CSS code to decrease bandwidth usage and
user-perceived latency.

What we witness in the evaluation is that some unused
rules are a result of reusing the entire CSS rule set of a parent
website, while perhaps only a small subset is needed. Others
are a result of copy-paste from other resources. CILLA can
tell web developers exactly what the used subset is so that
the remaining obsolete rules can be avoided. In addition,
our technique can assist in understanding the relationship
between CSS rules and DOM elements at runtime. For
instance, CILLA provides all DOM elements affected by

●
●●●

●

●

●

●●●

●

●

●

●

●

0 2000 4000 6000 8000

0
10

00
20

00
30

00
40

00
50

00
60

00

r= 0.964 p= 0

CSS Selectors

U

nu
se

d
C

SS
 S

el
ec

to
rs

Figure 8. Scatter plot of the total number of CSS selectors versus
the number of detected unused CSS selectors. r represents the Spearman
correlation coefficient and p is the p-value.

each selector, as well as all selectors affecting each element.
This relational information can be valuable during program
comprehension and refactoring tasks. Another interesting
area where CILLA could support web developers in is cross-
browser compatibility [35], [37] by providing an overview
of how DOM elements are linked to CSS rules in different
browsers.

Scalability and Performance. The results in Table II
show that our approach is scalable to deployed industrial
web applications consisting of tens of thousands of CSS
LOC and hundreds of DOM states. On average, it took
CILLA 22 minutes in total (including state exploration and
CSS analysis) to analyze 7K lines of CSS code and 100
DOM states. The results indicate that both scalability and
performance of CILLA are acceptable.

Threats to Validity. To minimize selection bias, seven
of our fifteen experimental objects were chosen randomly.
We acknowledge the fact that more studies are required to
draw more general conclusions. However, we believe the
systems are representative of CSS code present in deployed
web applications.

For measuring the rate of false positives and false nega-
tives, we randomly select a sample of the entire rule set from
the CSS code and check them manually against the output.
Manual checking of CSS rules is a time intensive task done
by the authors of the paper. Therefore, we acknowledge that
it could be error-prone and biased towards our judgment,
although we made every effort to mitigate these threats.
The main reason behind selecting samples instead of the
entire sets has been constraining the effort and time needed
to manually form a baseline, since there are thousands of
selectors and declaration properties along with hundreds of
DOM states in the systems, as shown in Table II. Increasing
the sample size or selecting other samples could change the
assessment, positively or negatively. As a remedy for this
threat, we created a script that randomly selects the samples.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

20000 40000 60000 80000

30
40

50
60

70
80

90

r= 0.557 p= 0.017

DOM Size (byte)

U
nu

se
d

Se
le

ct
or

s
(%

)

Figure 9. Scatter plot of the percentage of detected unused selectors versus
the average DOM size. r represents the Spearman correlation coefficient and
p is the p-value.

With respect to reliability of our results, CILLA and all
the fifteen web-based systems are publicly available, making
the case study replicable. One threat with using online web
applications in empirical studies is that they might change
over time, making exact replications challenging. That is
why we have also included two open source systems in the
study.

VIII. CONCLUDING REMARKS

This paper presents an automated approach for analyzing
the relation between CSS rules and DOM elements of web
applications. Our technique, implemented in a tool called
CILLA, is capable of detecting unmatched and ineffective
selectors and properties as well as undefined class values.

The results of our empirical evaluation, on several open-
source and industrial web applications, clearly point to
the ubiquity of the problem: On average we found 60%
unused selectors and 52% unused properties. Our results also
demonstrate the efficacy of the approach in automatically
detecting unused CSS code (100% recall and 80-100%
precision).

Our work can be enhanced and extended in several ways.
Improving the algorithms and implementation to further
reduce the number of false positives and conducting larger
case studies to obtain more empirical data form part of our
future work. Other directions we will pursue are exploration
of suitable techniques for analyzing pseudo classes and
elements. Further, we will investigate how the analysis
results can be used for detecting antipatterns and ‘smells’
in CSS code and suggesting refactoring steps for improving
code quality and maintainability.

ACKNOWLEDGMENT

This research was supported in part by an NSERC Dis-
covery grant, and the Institute for Computing, Information
and Cognitive Systems (ICICS) at UBC.

REFERENCES

[1] W3C, “CSS,” http://www.w3.org/Style/CSS/.

[2] G. Badros, A. Borning, K. Marriott, and P. Stuckey, “Con-
straint cascading style sheets for the web,” in Proceedings of
the 12th annual ACM symposium on User interface software
and technology. ACM, 1999, pp. 73–82.

[3] V. Quint and I. Vatton, “Editing with style,” in Proceedings
of the ACM symposium on Document engineering. ACM,
2007, pp. 151–160.

[4] M. Keller and M. Nussbaumer, “CSS code quality: A metric
for abstractness; or why humans beat machines in CSS cod-
ing,” in Proceedings of the 7th International Conference on
the Quality of Information and Communications Technology
(QUATIC ’10). IEEE Computer Society, 2010, pp. 116–121.

[5] W3C, “Assigning property values, cascading, and inheri-
tance,” http://www.w3.org/TR/CSS2/cascade.html.

[6] C. Jones, R. Liu, L. Meyerovich, K. Asanović, and R. Bodik,
“Parallelizing the web browser,” in Proceedings of the First
USENIX conference on Hot topics in parallelism. USENIX
Association, 2009, pp. 7–12.

[7] C. Badea, M. Haghighat, A. Nicolau, and A. Veidenbaum,
“Towards parallelizing the layout engine of firefox,” in Pro-
ceedings of the 2nd USENIX conference on Hot topics in
parallelism. USENIX Association, 2010, pp. 1–6.

[8] C. Stockwell, “IE8 what is coming,” Oreilly, June 2008, http:
//en.oreilly.com/velocity2008/public/schedule/detail/3290.

[9] L. A. Meyerovich and R. Bodik, “Fast and parallel webpage
layout,” in Proceedings of the 19th international conference
on World wide web, ser. WWW ’10. ACM, 2010, pp. 711–
720.

[10] M. Burnett, “What is end-user software engineering and why
does it matter?” in Proceedings of the 2nd International Sym-
posium on End-User Development (IS-EUD’09). Springer-
Verlag, 2009, pp. 15–28.

[11] W3C, “Grammar of CSS 2.1,” http://www.w3.org/TR/CSS21/
grammar.html#grammar.

[12] ——, “Pseudo-elements and pseudo-classes,” http://www.w3.
org/TR/CSS2/selector.html#pseudo-elements.

[13] H. W. Lie, “Cascading style sheets,” Ph.D. dissertation, Uni-
versity of Oslo, 2006.

[14] “SASS: Syntactically awesome stylesheets,” http://sass-lang.
com.

[15] W3C, “CSS Validator,” http://jigsaw.w3.org/css-validator/.

[16] “CSSTidy,” http://csstidy.sourceforge.net.

[17] “CSSClean,” http://www.cleancss.com.

[18] N. Sullivan, “CSS lint,” http://csslint.net.

[19] “Dust-Me Selectors,” http://www.sitepoint.com/
dustmeselectors/, version 2.2.

[20] “CSSess,” https://github.com/driverdan/cssess, version 1.0.

[21] A. Aho, R. Sethi, and J. Ullman, “Compilers: principles,
techniques, and tools,” Reading, MA,, 1986.

[22] S. K. Debray, W. Evans, R. Muth, and B. De Sutter, “Com-
piler techniques for code compaction,” ACM Trans. Program.
Lang. Syst., vol. 22, pp. 378–415, 2000.

[23] F. Tip, P. F. Sweeney, C. Laffra, A. Eisma, and D. Streeter,
“Practical extraction techniques for Java,” ACM Trans. Pro-
gram. Lang. Syst., vol. 24, pp. 625–666, 2002.

[24] E. Tempero, “An empirical study of unused design decisions
in open source Java software,” in Software Engineering Con-
ference, 2008. APSEC ’08. 15th Asia-Pacific, 2008, pp. 33–
40.

[25] T. Copeland, PMD applied. Centennial Books, 2005.

[26] J. Spieler, “UCDetector,” http://www.ucdetector.org.

[27] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and
evaluation of code clone detection techniques and tools: A
qualitative approach,” Sci. Comput. Program., vol. 74, pp.
470–495, 2009.

[28] “CSS Parser,” http://cssparser.sourceforge.net.

[29] W3C, “Document object model (DOM) level 2 style specifi-
cation,” http://www.w3.org/TR/DOM-Level-2-Style/.

[30] A. Mesbah, A. van Deursen, and S. Lenselink, “Crawling
Ajax-based web applications through dynamic analysis of
user interface state changes,” ACM Transactions on the Web
(TWEB), vol. 6, no. 1, pp. 3:1–3:30, 2012.

[31] A. Mesbah, A. van Deursen, and D. Roest, “Invariant-based
automatic testing of modern web applications,” IEEE Trans-
actions on Software Engineering (TSE), vol. 38, no. 1, pp.
35–53, 2012.

[32] P. Runeson and M. Höst, “Guidelines for conducting and
reporting case study research in software engineering,” Em-
pirical Software Engineering, vol. 14, no. 2, pp. 131–164,
2009.

[33] A. Kennedy and I. de Leon, Pro CSS for High Traffic
Websites. Apress, 2011.

[34] Yahoo!, “Random URL generator,” http://random.yahoo.com/
bin/ryl.

[35] S. R. Choudhary, H. Versee, and A. Orso, “WebDiff: Au-
tomated identification of cross-browser issues in web ap-
plications,” in Proc. of the 26th IEEE Int. Conf. on Softw.
Maintenance (ICSM’10), 2010, pp. 1–10.

[36] R. Gentleman and R. Ihaka, “The R project for statistical
computing,” http://www.r-project.org.

[37] A. Mesbah and M. R. Prasad, “Automated cross-browser
compatibility testing,” in Proceedings of the 33rd ACM/IEEE
International Conference on Software Engineering (ICSE’11).
ACM, 2011, pp. 561–570.

